
Tests aboard NASA’s Phoenix Mars Lander have confirmed frozen water exists on the Red Planet, the agency announced Thursday. The lander’s robotic arm delivered the sample Wednesday to an instrument that identifies vapors produced by the heating of samples.
“We have water,” said William Boynton of the University of Arizona, lead scientist for the Thermal and Evolved-Gas Analyzer, or TEGA.
“We’ve seen evidence for this water ice before in observations by the Mars Odyssey orbiter and in disappearing chunks observed by Phoenix last month, but this is the first time Martian water has been touched and tasted.”
With enticing results so far and the craft in good shape, NASA officials said, operational funding for the mission will be extended through Sept. 30, adding five weeks to the 90 days of the original mission.“We want to take full advantage of having this resource in one of the most interesting locations on Mars,” said Michael Meyer, chief scientist for the Mars Exploration Program at NASA Headquarters in Washington. The soil sample came from a trench about 2 inches (5 cm) deep, researchers said. When the robotic arm first reached that depth, it hit a hard layer of frozen soil. Two attempts to deliver samples of icy soil on days when fresh material was exposed were foiled when the samples became stuck inside the scoop. Most of the material in Wednesday’s sample had been exposed to the air for two days, scientists said, letting some of the water in the sample vaporize and making the soil easier to handle. “Mars is giving us some surprises,” said Phoenix principal investigator Peter Smith of the University of Arizona. “We’re excited because surprises are where discoveries come from. One surprise is how the soil is behaving. The ice-rich layers stick to the scoop when poised in the sun above the deck, different from what we expected from all the Mars simulation testing we’ve done. That has presented challenges for delivering samples, but we’re finding ways to work with it and we’re gathering lots of information to help us understand this soil.” Since landing on May 25, Phoenix has been studying soil with an onboard chemistry lab, TEGA, a microscope, a conductivity probe and cameras. The science team is trying to determine whether the water ice ever thaws enough for life to survive and if the chemical materials for life are present. The craft also made a full-circle, color panorama of its surroundings. “The details and patterns we see in the ground show an ice-dominated terrain as far as the eye can see,” said Mark Lemmon of Texas A&M University, lead scientist for Phoenix’s Surface Stereo Imager camera. “They help us plan measurements we’re making within reach of the robotic arm and interpret those measurements on a wider scale.” The Phoenix mission is led by Smith at the University of Arizona with project management at NASA’s Jet Propulsion Laboratory in Pasadena, Calif., and development partnership at Lockheed Martin in Denver.

No comments:
Post a Comment